BREVET DE TECHNICIEN SUPÉRIEUR

Conception et Industrialisation en Microtechniques

ÉPREUVE E3

Mathématiques et sciences physiques appliquées

UNITÉ U32

SCIENCES PHYSIQUES APPLIQUÉES

L'usage de tout modèle de calculatrice, avec ou sans mode examen, est autorisé.

La clarté des raisonnements et la qualité de la rédaction interviendront dans l'appréciation des copies.

Documents à rendre avec la copie :

- DOCUMENT RÉPONSE DR1 page 13/15
- DOCUMENT RÉPONSE DR2 page 14/15
- DOCUMENT RÉPONSE DR3 page 15/15

Dès que le sujet vous est remis, assurez-vous qu'il est complet et comporte 15 pages numérotées de 1/15 à 15/15.

BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
CODE SUJET : 19 - CDE3SC - ME1	Coefficient : 1,5	Page 1 sur 15

TAPIS DE COURSE INTERACTIF

Le tapis de course permet la pratique de la course à pied en salle, sans contrainte météorologique et avec un meilleur amortissement pour l'utilisateur que sur le revêtement citadin. Il peut être utilisé en salle de gymnastique spécialisée ou dans un logement personnel, en toute sécurité.

L'utilisateur court sur une courroie mobile qui est entraînée dans le sens inverse de la course. La vitesse de déplacement de la courroie mobile est réglable pour permettre au coureur de rester sur place.

Le sujet portera sur l'étude des fonctions techniques « dérouler la courroie mobile » et « incliner la plateforme de marche ».

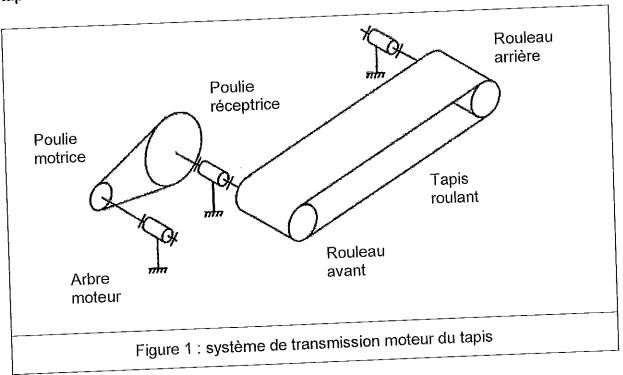
BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
	Coefficient: 1,5	Page 2 sur 15
CODE SUJET : 19 - CDE3SC - ME1		

Le sujet comporte quatre parties indépendantes :

Partie A: comment justifier le choix du moteur du tapis ? (8 points) ;

Partie B: comment faire varier la vitesse du tapis ? (6 points) ;

Partie C: comment régler l'inclinaison du tapis ? (3 points) ;


Partie D: comment afficher la position d'inclinaison du tapis ? (3 points).

BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
	Coefficient : 1,5	Page 3 sur 15

Partie A: comment justifier le choix du moteur du tapis ? (8 points)

Nous voulons déterminer dans cette partie la vitesse et les caractéristiques du moteur pour entraîner le tapis avec sa charge à la vitesse de 16,0 km·h⁻¹.

Étude du système poulies-courroie pour adapter la vitesse du moteur à celle du tapis

Données techniques :

- diamètre de la poulie motrice D_m = 52,0 mm ;
- diamètre de la poulie réceptrice D_r = 88,0 mm ;
- diamètre des rouleaux D = 50,0 mm.

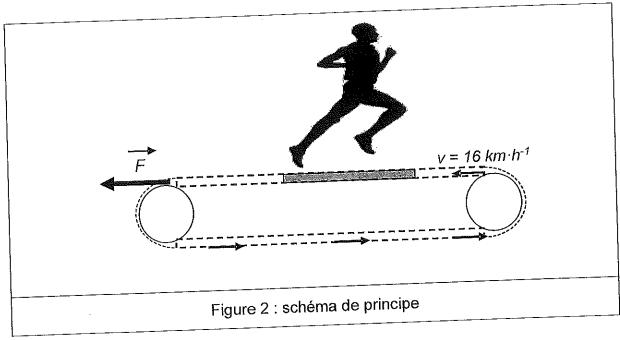
BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
CODE SUJET : 19 - CDE3SC - ME1	Coefficient : 1,5	Page 4 sur 15

On admet que la courroie des poulies et le tapis roulant sont inextensibles (il y a entraînement sans glissement), et que la vitesse linéaire du tapis, notée v, vaut 16,0 km·h⁻¹.

- Q1. Montrer que Ω_{pr} vaut 178 rad·s⁻¹ sachant que la vitesse de rotation Ω_{pr} de la poulie réceptrice est égale à la vitesse de rotation Ω_{av} du rouleau avant.
- Q2. Vérifier que le rapport de réduction de la transmission poulie motrice poulie réceptrice, notée r, vaut 0,591.
- Q3. Calculer la vitesse angulaire de rotation Ω_{pm} (en rad·s⁻¹) de la poulie motrice.
- **Q4**. Déduire la vitesse de rotation n_m (en tr·min⁻¹) du moteur.

Vérification de la puissance nominale du moteur à courant continu.

Le tapis est entraîné par un moteur à courant continu à aimant permanent dont les caractéristiques nominales sont les suivantes :


Tension :	Puissance utile :
Un = 130 V	P _n = 1840 W
Courant :	Couple utile :
In = 17,6 A	T _n = 5,76 N·m
Résistance d'induit :	Vitesse de rotation :
R = 1,10 Ω	N _n = 3050 tr [.] min ⁻¹

- Q5. Représenter le circuit comportant le modèle électrique équivalent de l'induit du moteur et sa source d'alimentation électrique.
- Q6. Nommer l'élément de votre modèle permettant de représenter les pertes par effet Joule.
- Q7. Calculer la puissance de ces pertes au point de fonctionnement nominal.
- Q8. Vérifier que la puissance utile nominale, notée Pn, vaut 1840 W sachant que les pertes collectives, notées Pc, valent 107 W.

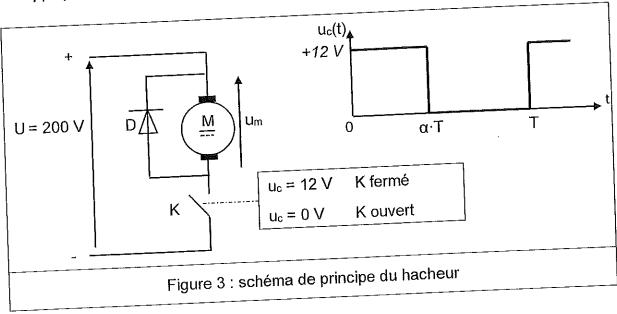
BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
	Coefficient : 1,5	Page 5 sur 15

Validation du choix du moteur

Pour entraîner un coureur à la vitesse v de 16,0 km·h⁻¹, le rouleau moteur exerce sur le tapis une force, notée F, de valeur 230 N (figure 2).

- Q9. Montrer que la valeur de la puissance transmise au tapis roulant est $P_{ent} = 1022 \text{ W}.$
- Q10. En déduire la puissance mécanique, notée P_M, que doit fournir le moteur sachant que le rendement global de la transmission entre le moteur et le tapis vaut 0,90.
- Q11. Justifier que le moteur choisi par le constructeur est bien adapté.

BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
	Coefficient : 1,5	Page 6 sur 15

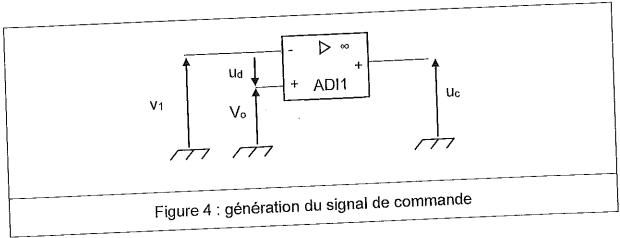

Partie B: comment faire varier la vitesse du tapis ? (6 points)

Le moteur est alimenté par l'intermédiaire d'un convertisseur continu-continu délivrant une tension moyenne $< u_m > = 116 \text{ V}$.

Étude du hacheur série permettant d'obtenir la vitesse souhaitée

Le réglage de la valeur moyenne $< u_m >$ de la tension est obtenu par un signal $u_c(t)$ qui commande l'interrupteur K du hacheur suivant le schéma de la figure 3.

On applique la tension de commande u₀(t) à l'interrupteur K.



- Q12. Préciser le rôle de la diode D.
- Q13. Compléter sur le DOCUMENT RÉPONSE DR1, le chronogramme de la tension u_m(t) aux bornes de l'induit du moteur.
- Q14. Donner l'expression de la valeur moyenne de la tension $u_m(t)$, notée $< u_m >$, en fonction du rapport cyclique α et de U.
- Q15. Calculer la valeur du rapport cyclique α pour obtenir une tension moyenne $<_{Um}>=116$ V.

BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
	Coefficient: 1,5	Page 7 sur 15

Étude du circuit de commande de l'interrupteur K

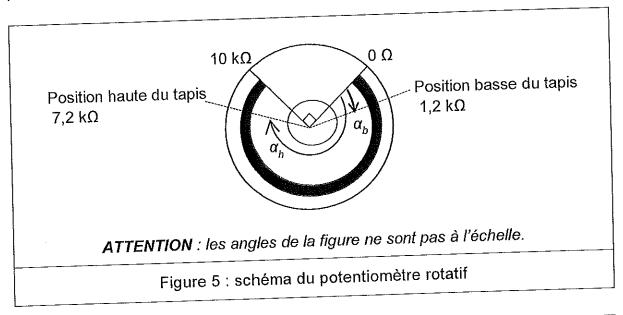
La figure 4 représente le schéma du circuit permettant de générer la tension u_c de commande de l'interrupteur.

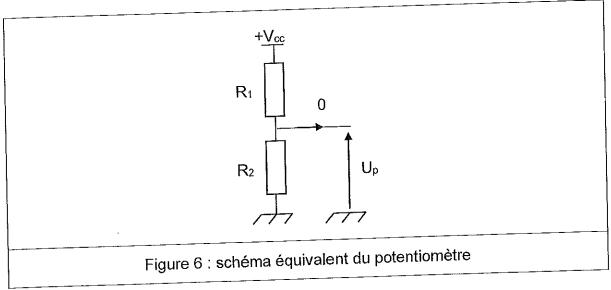
 V_0 est une tension continue image de la vitesse souhaitée.

L'amplificateur différentiel intégré ADI1 est considéré comme parfait et alimenté entre 0 V et 12 V.

- Q16. Donner le régime de fonctionnement de l'ADI1 en justifiant votre réponse. Préciser la fonction réalisée par le circuit.
- Q17. Donner la valeur que peut prendre uc suivant le signe de ud.

La tension v_1 est un signal triangulaire alternatif d'amplitude 10 V.


- Q18. Représenter la tension u_c sur le DOCUMENT RÉPONSE DR2 pour la valeur $V_0 = 1,6 \text{ V}.$
- Q19. Vérifier graphiquement que la valeur du rapport cyclique α de la tension de commande u_c vaut environ 0,58.


٢	BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
١		Coefficient : 1,5	Page 8 sur 15
	CODE SUJET : 19 - CDE3SC - ME1		

Partie C: comment régler l'inclinaison du tapis ? (3 points)

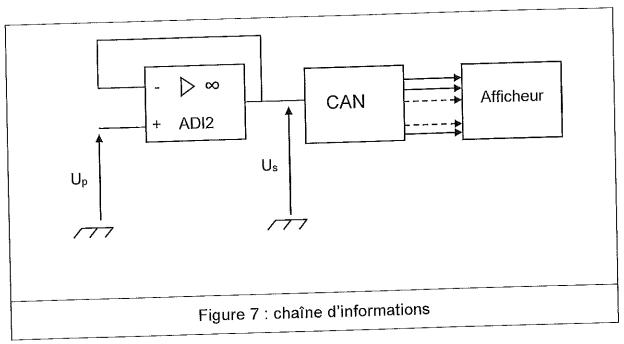
L'inclinaison permet de modifier la difficulté de l'effort et de solliciter davantage certains muscles. La marche en forte inclinaison procure davantage de confort au niveau des articulations et du dos. Une commande par impulsions (de 0 à 12) incrémente ou décrémente l'inclinaison du tapis suivant 13 positions.

La position de l'inclinaison du tapis est contrôlée par un potentiomètre rotatif monotour linéaire (figure 5). La résistance prise aux bornes du potentiomètre est proportionnelle à l'angle de rotation de celui-ci. La valeur maximale de la résistance (10 k Ω) est obtenue pour un angle de rotation égal à 270°.

BTS CIM Unité U32 : sciences physiques appliquées D	ourée : 2 h	Session 2019
	efficient : 1,5	Page 9 sur 15

Lorsque le tapis est en position basse alors : R_1 = 8,8 $k\Omega$, R_2 = 1,2 $k\Omega$ et U_p = 0,6 V.

Lorsque le tapis est en position haute alors : R_1 = 2,8 $k\Omega$, R_2 = 7,2 $k\Omega$ et U_p = 3,6 V.


- Q20. Établir l'expression de U_p en fonction de R_1 , R_2 et V_{∞} .
- Q21. Calculer la valeur de V_{∞} dans ces conditions.
- Q22. Déterminer la valeur de l'angle de rotation du potentiomètre α_b qui correspond à la position basse du tapis en vous aidant de la figure 5.

BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
CODE SUJET : 19 - CDE3SC - ME1	Coefficient : 1,5	Page 10 sur 15

Partie D: comment afficher la position d'inclinaison du tapis ? (3 points)

La tension U_p issue du montage potentiométrique est l'image de la position d'inclinaison du tapis. Cette tension est appliquée à un convertisseur analogique numérique (CAN) pour être traitée avant affichage.

On schématise le circuit sur la figure 7.

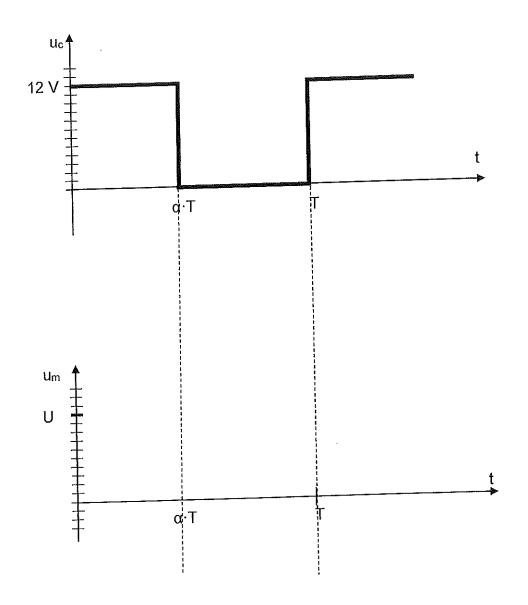
L'amplificateur différentiel intégré ADI2 est considéré comme parfait. Il est alimenté sous deux tensions + 12 V et - 12 V. La conversion s'effectue sur 8 bits.

Pour la suite, on considère que la tension U_p varie entre 0,60 V (position 0) et 3,6 V (position 12) par tranche d'égale valeur de tension.

Le quantum est donné par l'expression suivante : $q = \frac{V_{ref}}{2^n}$ avec V_{ref} valant 5,0 V et n représentant le nombre de bits.

BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
	Coefficient : 1,5	Page 11 sur 15

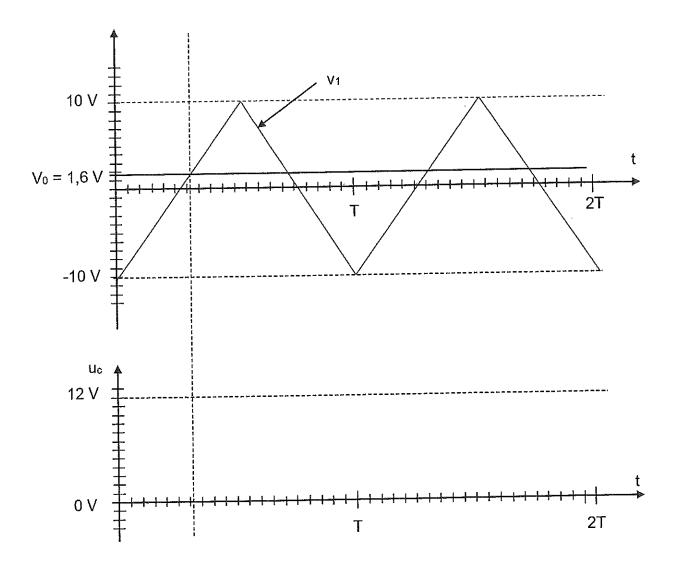
- Q23. Donner le nom du montage réalisé par l'amplificateur ADI2. Indiquer son intérêt.
- Q24. Déduire la relation entre Us et Up.
- Q25. Calculer le quantum en précisant son unité. Vous donnerez la valeur avec 3 chiffres significatifs.
- Q26. Donner l'expression de la valeur de sortie du CAN notée N₁₀ en fonction de la tension d'entrée U_s et du quantum.


Lorsque le sélecteur d'inclinaison par impulsion passe de la position 0 à la position 1, la tension U_p varie de 0,25 V.

Q27. Compléter le tableau de synthèse du DOCUMENT RÉPONSE DR3.

BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
	Coefficient : 1,5	Page 12 sur 15

DOCUMENT RÉPONSE DR1 À rendre avec votre copie


RÉPONSE à la Q13

BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
	Coefficient : 1,5	Page 13 sur 15

DOCUMENT RÉPONSE DR2 À rendre avec votre copie

RÉPONSE à la Q18

BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
CODE SUJET : 19 - CDE3SC - ME1	Coefficient : 1,5	Page 14 sur 15

DOCUMENT RÉPONSE DR3 À rendre avec votre copie

RÉPONSE à la Q27

Position	Up	N ₁₀ en décimal (partie entière)	N ₂ en binaíre	
0		30		
1			00101011	
12	3,6	184	10111000	

BTS CIM Unité U32 : sciences physiques appliquées	Durée : 2 h	Session 2019
	Coefficient : 1,5	Page 15 sur 15